
International Journal of Theoretical Physics, Vol. 43, No. 9, September 2004 ( C© 2004)

Pastings of MV-Effect Algebras

Zdenka Riečanová1

We give a method of constructing a lattice effect algebra E with given family of blocks.
The given MV-effect algebras are “pasted” along some common sub-MV-effect algebras
in a such manner that there exists an ((o)-continuous) state on the pasting E .
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1. INTRODUCTION

Lattice effect algebras generalize orthomodular lattices and MV-effect alge-
bras (including Boolean algebras), as well as their common horizontal sums and
direct products. For instance, the horizontal sum of two MV-effect algebras, or, an
orthomodular lattice and an MV-effect algebra is a lattice effect algebra. The same
holds for their direct product.

Effect algebras have been introduced by Foulis and Bennet (1994). In some
sense equivalent structures D-posets have been introduced by Kôpka and Chovanec
(1994). Elements of these structures represent events which may be unsharp or
imprecise, e.g., quantum effects or fuzzy events.

In Riečanová (2000b) it has been shown that every lattice effect algebra E
is a union of its maximal subsets of pairwise compatible elements, called blocks.
Blocks are sub-effect algebras and sublattices of E . Moreover, every block M of
E is an MV-effect algebra in its own right, which means that it can be organized
into an MV-algebra (Chang, 1958). It follows that the intersection of two or more
blocks of E is again an MV-effect algebra which is a sub-effect algebra and a
sublattice of E . Unfortunately, in spite of the fact that there is a state on every MV-
effect algebra (MV-algebra), there are even finite lattice effect algebras admitting
no states (Greechie, 1971).

The aim of this paper is to present a method of constructing a complete
(atomic) effect algebra E with given family of blocks in a such manner that a state
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(an (o)-continuous state in the case of atomic E) will exist on E . One well-known
kind of such “pasting” of blocks is their horizontal sum, which is the disjoint
union of blocks with “pasted” (identified) all least and all greatest elements. Our
aim is to “past” MV-effect algebras together along some isomorphic sub-MV-effect
algebras of given blocks.

2. BASIC DEFINITIONS AND FACTS

Definition 2.1. (Foulis and Bennett (1994)) A partial algebra (E ; ⊕, 0, 1) is called
an effect-algebra if 0, 1 are two distinct elements and ⊕ is a partially defined binary
operation on E which satisfies the following conditions for any a, b, c ∈ E :

(Ei) b ⊕ a = a ⊕ b if a ⊕ b is defined,
(Eii) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a ⊕ b = 1 (we
put a′ = b),

(Eiv) if 1 ⊕ a is defined then a = 0.

We often denote the effect algebra (E ; ⊕, 0, 1) briefly by E . Moreover, if
we write a ⊕ b = c for a, b, c ∈ E , then we mean both that a ⊕ b is defined and
a ⊕ b = c. In every effect algebra E we can define the partial operation � and the
partial order ≤ by putting

a ≤ b and b � a = c iff a ⊕ c is defined and a ⊕ c = b.

Since a ⊕ c = a ⊕ d implies c = d , the operation � and the relation ≤ are well
defined. If E with the defined partial order is a lattice (a complete lattice) then
(E ; ⊕, 0, 1) is called a lattice effect algebra (a complete effect algebra). Moreover,
if E is a modular or distributive lattice then E is called modular or distributive
effect algebra.

Recall that a set Q ⊆ E is called a sub-effect algebra of the effect algebra E
if

(i) 1 ∈ Q,
(ii) if out of elements a, b, c ∈ E with a ⊕ b = c two are in Q, then a, b, c ∈

Q.

Assume that (E1; ⊕1, 01, 11) and (E2; ⊕2, 02, 12) are effect algebras. An in-
jection ϕ : E1 → E2 is called an embedding if ϕ(11) = 12 and for a, b ∈ E1 we
have a ≤ b′ iff ϕ(a) ≤ (ϕ(b))′ in which case ϕ(a ⊕1 b) = ϕ(a) ⊕2 ϕ(b). We can
easily see that then ϕ(E1) is a sub-effect algebra of E2 and we say that E1 and
ϕ(E1) are isomorphic (written E1

∼= ϕ(E1)) , or that E1 is up to isomorphism a
sub-effect algebra of E2. We usually identify E1 with ϕ(E1).
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For an effect algebra E a map ω E → [0, 1] ⊆ (−∞, ∞) is called a state
on E if ω(1) = 1 and x ≤ y′ implies ω(x ⊕ y) = ω(x) + ω(y); ω is called (o)-
continuous if xα

(o)→ x implies ω(xα) → ω(x). Here, for a net (xα)α∈E of elements of
E , we write xα

(o)→ x if there exists a nondecreasing net (uα)α∈E and a nonincreasing
net (vα)α∈E such that uα ≤ xα ≤ vα , for α ∈ E , and uα ↑ x , vα ↓ x , which means
that

∨
α∈E uα = x = ∧

α∈E vα . It is easy to show that ω is (o)-continuous iff xα ↑ x
implies ω(xα) ↑ ω(x).

An effect algebra (E ; ⊕, 0, 1) is called Archimedean if for no nonzero element
e ∈ E the elements ne = e ⊕ e · · · ⊕ e︸ ︷︷ ︸

n-times
exist for all n ∈ N . An Archimedean effect

algebra is called separable if every ⊕-orthogonal system of elements of E is at
most countable. We can show that every complete effect algebra is Archimedean
(Riečanová, 2000a).

For an element x of an effect algebra E we write ord(x) = ∞ if nx exists
for every n ∈ N . We write ord(x) = nx ∈ N if nx is the greatest positive integer
such that nx x exists in E . Then nx is called an isotropic index of x . Clearly, in an
Archimedean effect algebra nx < ∞ for every x ∈ E .

For more details we refer the reader to Dvurečenskij and Pulmannová (2000).

3. THE PASTING OF A FAMILY OF MV-EFFECT ALGEBRAS

From now on we make the assumption that E is a lattice effect algebra.
Recall that elements x and y of a lattice effect algebra E are called compatible

(written x ↔ y) if x ∨ y = x ⊕ (y � (x ∧ y)). For x ∈ E and Y ⊆ E we write
x ↔ Y iff x ↔ y for all y ∈ Y . If every two elements of E are compatible then
E is called an MV -effect algebra. Further, every maximal subset M of pairwise
compatible elements of a lattice effect algebra E is a sub-effect algebra and a
sublattice of E , called a block of E . Moreover, every block is an MV-effect algebra
in its own right and E is a union of its blocks (see Riečanová, 2000b). Thus E
is a “pasting” of MV-effect algebras. Every MV-effect algebra M has the Riesz
decomposition property (RDP, for short): (c, a, b ∈ M with c ≤ a ⊕ b) =⇒ (there
is a1 ≤ a and b1 ≤ b such that c = a1 ⊕ b1).

Recall that a direct product
∏{Eκ | κ ∈ H}of effect algebras Eκ is a Cartesian

product with ⊕, 0 and 1 defined “coordinatewise.” An element z ∈ E is called
central if the intervals [0, z] and [0, z′] with the inherited ⊕-operation are effect
algebras in their own right and E ∼= [0, z] × [0, z′], (see Greechie et al., 1995).
The set C(E) = {z ∈ E | z is central} is called a center of E . If C(E) = {0, 1}
then E is called irreducible.

In every lattice effect algebra E the set S(E) = {x ∈ E | x ∧ x ′ = 0} is an
orthomodular lattice and B(E) = {x ∈ E | x ↔ E} is an MV-effect algebra such
that S(E) and B(E) are sub-lattices and sub-effect algebras of E . Moreover, z ∈
C(E) iff x = (x ∧ z) ∨ (x ∧ z′) for all x ∈ E , which gives C(E) = B(E) ∩ S(E)
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for every lattice effect algebra E . If E is an MV-algebra then C(E) = S(E). Further,
S(E), B(E) and C(E) are closed with respect to all existing infima and suprema
(Riečanová, 2001). In general, C(E) = {0, 1} does not imply C(S(E)) = {0, 1}.
Note that S(E) is called the set of sharp elements of E and B(E) is called the
compatibility center of E .

Recall that the length of a finite chain is the number of its elements minus
1. The length (height) of a lattice L is finite if the supremum over the number of
elements of chains in L equals to some natural number n and then n − 1 is called
length of the lattice L .

Every finite chain 0 < a < 2a < · · · < 1 = naa is a distributive effect al-
gebra in which every pair of elements is compatible, hence it is an MV-effect
algebra.

An element a of an effect algebra E is called an atom if 0 ≤ b < a implies
b = 0 and E is called atomic if for every x ∈ E , x �= 0 there is an atom a ∈ E
with a ≤ x . Clearly every finite effect algebra is atomic.

Definition 3.2. Let E be an effect algebra and let (Eχ )χ∈H be a family of sub-
effect algebras of E such that:

(i) E = ⋃

χ∈H
Eχ .

(ii) If x ∈ Eχ1 \ {0, 1}, y ∈ Eχ2 \ {0, 1} and χ1 �= χ2, χ1, χ2 ∈ H , then x ∧
y = 0 and x ∨ y = 1.

Then E is called a horizontal sum of effect algebras (Eχ )χ∈H .

Example 3.3. If MV-effect algebras M1 and M2 are finite chains of different
lengths then the horizontal sum of M1 and M2 is the unique lattice effect algebra
E such that {M1, M2} is the family of all blocks of E .

Really, assume that M1 = {0, a, . . . , naa}, M2 = {0, b, . . . , nbb} and na <
nb. Contrary to our claim, assume that ka = �b for some � �= nb. Then a ≤ ka =
�b < b′, which gives a ↔ b and hence, by Riečanová (2000b), M1 ∪ M2 is the set
of pairwise compatible elements, a contradiction. Thus ka = �b implies � = nb

which gives k = na , because nbb ∈ S(E) while for k < na we have ka /∈ S(E).
This proves that E = M1 ∪ M2 is the horizontal sum of its blocks M1 and M2.

If M1 and M2 have the same length, i.e., na = nb then M1 and M2 are iso-
morphic MV-effect algebras and we can identify them. In this case we will call a
and b isotropically equivalent.

Definition 3.4. Let M1 and M2 be complete atomic MV-effect algebras, let A1 and
A2 be the sets of all atoms of M1 and M2, respectively, and let D1 ⊆ A1 and D2 ⊆
A2. The sets D1 and D2 are called isotropically equivalent (written D1

istr∼ D2)
if there is a bijection ϕ D1 → D2 such that n p = ord (p) = nϕ(p) = ord (ϕ(p))
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for all p ∈ D1. If D1 = {p} and D2 = {q} then p and q are called isotropically
equivalent atoms.

Example 3.5. Assume that M1 and M2 are complete atomic MV-effect algebras
and E = M1 ∪ M2 is an effect algebra such that {M1, M2} is the family of all
blocks in E . Then every atom p of E is an atom of M1 or M2 and conversely, since
p ↔ x iff p ≤ x or p ≤ x ′. Further, if p ∈ M1 ∩ M2 then {0, p, 2p, . . . , n p p} ⊆
M1 ∩ M2, because x ↔ p gives x ↔ kp for all kp existing in E , and hence the
isotropic indices of p in M1 and M2 must coincide. Moreover, if for atoms p �= q we
have n p p = nqq then p �↔ q and the interval [0, n p p]E in E is the horizontal sum
of chains {0, p, . . . , n p p} and {0, q , . . . , nqq}. Otherwise we have p ↔ q, which
implies q ≤ p ⊕ q = p ∨ q = n p p and by RDP we obtain q = p, a contradiction.
Moreover, kp = �p for k < n p implies that q ≤ kp ≤ p′, which again gives p ↔
q, a contradiction.

Theorem 3.1. Let (Mχ )χ∈H be a family of complete atomic MV-effect algebras
such that there are nonempty sets Dχ of atoms of Mχ , χ ∈ H satisfying Dχ1

istr∼ Dχ2 ,
for every pair χ1, χ2 ∈ H. Let uχ = ⊕{n p p | p ∈ Dχ } �= 1χ , and [0χ , u′

χ ]Mχ
�=

{0χ , u′
χ } χ ∈ H. Then for chosen χ0 ∈ H and every χ ∈ H:

(i) uχ ∈ C(Mχ ).
(ii) [0χ , uχ ]Mχ

∼= [0χ0 , uχ0 ]Mχ0
.

(iii) Fχ = [0χ , uχ ]Mχ
∪ [u′

χ , 1χ ]Mχ
∼= Fχ0 and Fχ0 is an MV-effect algebra.

(iv) There is a complete atomic effect algebra E = ∪χ∈H Mχ , whose fam-
ily of all blocks coincides with (Mχ )χ∈H , ∩χ∈H Mχ = Fχ0 and E ∼=
[0χ0 , uχ0 ]Mχ0

× G, where G is the horizontal sum of all [0χ , u′
χ ]Mχ

,
χ ∈ H.

(v) Mχ1 ∩ Mχ2 = Fχ0 , for any pair of blocks of E.
(vi) There is an (o)-continuous state on E.

Proof:

(i) Let Aχ be the set of all atoms of Mχ , χ ∈ H . By Riečanová (2002), The-
orem 3.3, for every x ∈ Mχ there is a set {aα ∈ Aχ | α ∈ E} and positive
integers kα , α ∈ E such that x = ⊕{kαaα | α ∈ E} = ∨{kαaα | α ∈ E}.
Moreover, x ∈ S(Mχ ) iff kα = naα

= ord (aα) for all α ∈ E . Since Mχ

is an MV-effect algebra, we have S(Mχ ) = C(Mχ ), which proves that
uχ ∈ C(Mχ ).

(ii) Since Mχ is an MV-effect algebra, it satisfies Riesz decomposition prop-
erty. By part (i) of the proof and RDP we have that for every p ∈ Dχ

the element n p p is an atom of S(Mχ ) = C(Mχ ) and hence the interval
[0χ , n p p]Mχ

in Mχ is a finite chain 0χ < p < 2p < · · · < n p p (see
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Riečanová, 2003b). Let ϕ Dχ → Dχ0 be a bijection satisfying n p =
ord (p) = ord (ϕ(p)) = nϕ(p) for all p ∈ Dχ . We can extend the map-
ping ϕ onto [0χ , n p p]Mχ

by putting ϕ(kp) = kϕ(p) for all k ≤ n p. Ob-
viously, ϕ [0χ , n p p]Mχ

→ [0χ0 , ϕ(n p p)]Mχ0
is an isomorphism. Further

{n p p | p ∈ Dχ } is the set of all atoms of the center C([0χ , uχ ]Mχ
) which,

by Riečanová (2003a), Lemma 4.3, gives [0χ , uχ ]Mχ
∼= ∏{[0χ , n p p]Mχ

|
p ∈ Dχ } ∼= ∏{[0χ0 , ϕ(n p p)]Mχ0

| p ∈ Dχ0} ∼= [0χ0 , uχ0 ]Mχ0
.

(iii) Using (ii) we obtain Fχ
∼= [0χ , uχ ]Mχ

× {0χ , u′
χ } ∼= [0χ0 , uχ0 ]Mχ0

×
{0χ0 , u′

χ0
} ∼= Fχ0 . Since Fχ0 is a sub-effect algebra and a complete sub-

lattice of Mχ0 , we obtain that Fχ0 is a complete atomic MV-effect algebra
as well.

(iv) Since the intervals [0χ , u′
χ ]Mχ

are complete sub-lattices of Mχ , these
intervals, with ⊕ inherited from Mχ , as well as their horizontal sum
G are complete atomic effect algebras. Moreover, ([0χ , u′

χ ]Mχ
)χ∈H is a

family of blocks of G. Let us construct an effect algebra E = ∪χ∈H Mχ
∼=

[0χ0 , uχ0 ]Mχ0
× G by such a way that we identify all Fχ = [0χ , uχ ]Mχ

∪
[u′

χ , 1χ ]Mχ
, χ ∈ H , with the MV-effect algebra Fχ0 and, moreover, we

make a horizontal sum of all [0χ , u′
χ ]Mχ

identifying all 0χ with 0χ0 and
u′

χ with u′
χ0

. By Riečanová (2003c), every block of E is isomorphic to
a direct product of [0χ0 , uχ0 ]Mχ0

and a block of G, and conversely, since
[0χ0 , uχ0 ]Mχ0

is an MV-effect algebra. This proves that M is a block of
E iff there is χ ∈ H such that M ∼= [0χ , uχ ]Mχ

× [0χ , u′
χ ]Mχ

and hence
M = Mχ .

(v) Let χ1, χ2 ∈ H . Then Mχ1
∼= [0χ0 , uχ0 ]Mχ0

× [0χ1 , u′
χ1

]Mχ1
and Mχ2

∼=
[0χ0 , uχ0 ]Mχ0

× [0χ2 , u′
χ2

]Mχ2
. Further, we have identified elements 0χ0 ,

0χ1 and 0χ2 , and elements u′
χ0

, u′
χ1

and u′
χ2

. It follows that in E we have
[0χ1 , u′

χ1
]Mχ1

∩ [0χ2 , u′
χ2

]Mχ2
= {0χ0 , u′

χ0
}. We obtain that Mχ1 ∩ Mχ2

∼=
[0χ0 , uχ0 ] × {0χ0 , u′

χ0
} ∼= Fχ0 .

(vi) By (iii), E ∼= [0, u] × G, where u ∈ C(E), [0, u] is a complete atomic
MV-effect algebra and G is the horizontal sum of a family (Eχ )χ ∈ H of
complete atomic MV-effect algebras. By Riečanová (2003a), Theorem
5.2, on every complete atomic MV-effect algebra Eχ there is an (o)-
continuous state ωχ , χ ∈ H . Let us define a mapping ωG G → [0, 1] by
the following way: For every x ∈ G let ωG(x) = ωχ (x), where χ ∈ H be
such that x ∈ Eχ . Obviously ωG is an (o)-continuous state on G. Further,
let ω0 be an (o)-continuous state on [0, u]. For every pair of nonnegative
real numbers k1 and k2 with k1 + k2 = 1, the mapping ω = k1ω0 + k2ωG

is an (o)-continuous state on E . The last follows by the facts that for
x , y ∈ E with x ≤ y′ we have (x ⊕ y) ∧ u = (x ∧ u) ⊕ (y ∧ u), as well
as (x ⊕ y) ∧ u′ = (x ∧ u′) ⊕ (y ∧ u′) (see Riečanová, 2003a, Lemma
4.1) and x ⊕ y = ((x ⊕ y) ∧ u) ⊕ ((x ⊕ y) ∧ u′). Further for xα , x ∈ E
such that xα ↑ x , α ∈ E we have xα ∧ u ↑ x ∧ u, xα ∧ u′ ↑ x ∧ u′ and
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xα = (xα ∧ u) ⊕ (xα ∧ u′) ↑ (x ∧ u) ⊕ (x ∧ u′) = x , α ∈ E , since there
is χ ∈ H such that for all α ∈ E we have xα ∧ u′ ∈ Eχ . �

Definition 3.6. The complete atomic effect algebra E , constructed in Theorem
3.5, is called a pasting of MV-effect algebras (Mχ )χ∈E together along an MV-effect
algebra [0χ0 , uχ0 ]Mχ0

∪ [u′
χ0

, 1χ0 ]Mχ0
⊆ Mχ0 , for chosen χ0 ∈ H .

Remark 3.7. If in Theorem 3.5 the chosen sets Dχ of atoms of Mχ are finite
then the completeness of MV-effect algebras Mχ , χ ∈ H can be weakened to the
assumption that all Mχ are Archimedean, since then elements uχ = ⊕{n p p | p ∈
Dχ } exist. Obviously, then E = ∪χ∈H Mχ will be an Archimedean atomic lattice
effect algebra admitting an (o)-continuous state.

If Mχ , χ ∈ H are complete atomic Boolean algebras and all sets Dχ of
atoms of Mχ have the same cardinality then E = ∪χ∈H Mχ constructed in Theo-
rem 3.5 will be a complete atomic orthomodular lattice with blocks Mχ , χ ∈ H .
If Dχ are finite then the assumption of completeness of Mχ can be omitted. For
pasting of orthomodular posets we refer the reader to Navara and Rogalewicz
(1991).

4. PASTINGS OF TWO AND MORE FAMILIES OF COMPLETE
ATOMIC MV-EFFECT ALGEBRAS

Assume that (Mχ )χ∈H is a family of complete atomic MV-effect algebras.
Let H1, H2 ⊆ H be nonempty sets of indices such that H1 ∪ H2 = H and H1 ∩
H2 = ∅. Further, assume that E1 is the pasting of (Mχ )χ∈H1 together along an MV-
effect algebra [0χ1 , uχ1 ]Mχ1

∪ [u′
χ1

, 1χ1 ]Mχ1
for chosen χ1 ∈ H1, and E2 is the past-

ing of (Mχ )χ∈H2 together along an MV-effect algebra [0χ2 , uχ2 ]Mχ2
∪ [u′

χ2
, 1χ2 ]Mχ2

for chosen χ2 ∈ H2. By Theorem 3.5 we have E1
∼= [0χ1 , uχ1 ]Mχ1

× G1 and E2
∼=

[0χ2 , uχ2 ]Mχ2
× G2, where G1 is the horizontal sum of all [0χ , u′

χ ]Mχ
, χ ∈ H1

and G2 is the horizontal sum of all [0χ , u′
χ ]Mχ

, χ ∈ H2. Recall that here, for
all χ ∈ H1 (χ ∈ H2), uχ = ⊕{n p p | p ∈ Dχ } �= 1χ and [0χ1, u1

χ ]Mχ
�= {0χ1, u′

χ }
where Dχ ⊆ Mχ are isotropically equivalent sets of atoms.

Assume now that there are isotropically equivalent sets of atoms K1 ⊆ P1 =
[0χ1 , uχ1 ]Mχ1

and K2 ⊆ P2 = [0χ2 , uχ2 ]Mχ2
. By Jenča et al., 2002, Theorem 4.3, for

every p ∈ K1 (q ∈ K2) we have n p p ≤ uχ1 (nqq ≤ uχ2 ). Moreover, by Riečanová,
2003a, Lemma 2.1, v1 = ⊕{n p p | p ∈ K1} = ∨{n p p | p ∈ K1} ≤ uχ1 and v2 =
⊕{nqq | q ∈ K2} = ∨{nqq | q ∈ K2} ≤ uχ2 . By Theorem 3.5, (ii), [0χ1 , v1]P1

∼=
[0χ2 , v2]P2 . Let v1 �= uχ1 and v2 �= uχ2 . Let us identify [0χ1 , v1]P1 and [0χ2 , v2]P2 .
Further, let G12 be the horizontal sum of [0χ1 , v ′

1 ∧ uχ1 ]P1 × G1 and [0χ2 , v ′
2 ∧

uχ2 ]P2 × G2. Then there is a complete atomic effect algebra E = ∪χ∈H Mχ
∼=

[0χ1 , v1]P1 × G12, whose family of all blocks coincides with (Mχ )χ∈H . The last is
a consequence of the facts that every block of [0χ1 , v1]P1 × G12 is a direct product
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of [0χ1 , v1]P1 and a block of G12 and every block of G12 is isomorphic to a direct
product of MV-effect algebra [0χ1 , v ′

1 ∧ uχ1 ]P1 and a block of G1, or a direct product
of [0χ2 , v ′

2 ∧ uχ2 ]P2 and a block of G2 (Riečanová, 2003c). Thus every block M of
E is isomorphic to [0χ1 , v1]P1 × [0χ1 , v ′

1 ∧ uχ1 ]P1 × [0χ , u′
χ ]Mχ

∼= [0χ1 , uχ1 ]Mχ1
×

[0χ , u′
χ ]Mχ

∼= Mχ ∈ (Mχ )χ∈H1 , for chosen χ1 ∈ H1 and some χ ∈ H1, or M ∼=
[0χ2 , v2]P2 × [0χ2 , v ′

2 ∧ uχ2 ]P2 × [0χ , u′
χ ]Mχ

∼= [0χ2 , uχ2 ]Mχ2
× [0χ , u′

χ ]Mχ
∼= Mχ

∈ (Mχ )χ∈H2 , for chosen χ2 ∈ H2 and some χ ∈ H2, and conversely.
Obviously, E is the pasting of E1 and E2 together along the MV-effect algebra

[0χ1 , v1]Mχ1
∪ [v ′

1 ∧ uχ1 , uχ1 ]Mχ1
. It follows that for all α ∈ H1 and β ∈ H2 we

have Mα ∩ Mβ = [0χ1 , v1]Mχ1
∪ [v ′

1 ∧ uχ1 , uχ1 ]Mχ1
, for chosen χ1 ∈ H1. Further,

for α, β ∈ H1 we have
Mα ∩ Mβ = [0χ1 , uχ1 ]Mχ1

∪ [u′
χ1

, 1χ1 ]Mχ1
, for chosen χ1 ∈ H1, and for α, β ∈

H2 we have
Mα ∩ Mβ = [0χ2 , uχ2 ]Mχ2

∪ [u′
χ2

, 1χ2 ]Mχ2
, for chosen χ2 ∈ H2.

The existence of an (o)-continuous state on the above constructed effect alge-
bra E is obvious from the facts that G12 is a horizontal sum of two complete effect
algebras admitting (o)-continuous state, hence there exists an (o)-continuous state
ω12 on G12. Further, [0χ1 , v1]P1 is a complete atomic MV-effect algebra, hence
there exists an (o)-continuous state m on [0χ1 , v1]P1 . Thus for any 0 ≤ k1, k2 ≤ 1
with k1 + k2 = 1 the convex combination k1m + k2ω12 = ω is an (o)-continuous
state on E .

Obviously, the method described above can be extended for the pasting of
more than two families of complete atomic MV-effect algebras.

Theorem 4.1. Let (Mχ )χ∈H be a family of complete atomic MV-effect alge-
bras. Let, for α ∈ E , Hα ⊆ H be such that ∪α∈E Hα = H and Hα ∩ Hβ = ∅,
for all α �= β, α, β ∈ E . Let, for α ∈ E , Eα be the pasting of (Mχ )χ∈Hα

together
along the MV-algebra [0χα

, uχα
]Mχα

∪ [u′
χα

, 1χα
]Mχα

, for chosen χα ∈ Hα . Let vα ∈
C([0χα

, uχα
]Mχα

) be such that vα �= uχα
and let [0χα

, vα]Mχα

∼= [0χα0
, vα0 ]Mχα0

, for
chosen α0 ∈ E and χα0 ∈ Hα0 , and for all χα ∈ Hα . Let Gα be the horizontal
sum of all [0χ , u′

χ ]Mχ
, χ ∈ Hα and let G be the horizontal sum of effect algebras

[0χα
, v ′

α ∧ uχα
]Mχα

× Gα , for all α ∈ E . Then E = ∪χ∈H Mχ
∼= [0χα0

, vα0 ]Mχα0
×

G is a complete atomic effect algebra whose family of all blocks coincides with
the family (Mχ )χ∈H . In this case there is an (o)-continuous state ω on E.

The proof runs in the same manner as for the pasting of two families of
complete atomic MV-effect algebras and it is left to the reader.

It is worth pointing out that the described methods of pastings of MV-effect
algebras can be extended to families (Mχ )χ∈H of nonatomic MV-effect algebras
with nontrivial centers and with existing uχ ∈ C(Mχ ), uχ �= 1χ and [0χ1, u1

χ ]Mχ
�=

{0χ1, u′
χ } such that for chosen χ0 ∈ H and all χ ∈ H we have [0χ0 , uχ0 ]Mχ0

∼=
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[0χ , uχ ]Mχ
. Then E = ∪χ∈H Mχ

∼= [0χ0 , uχ0 ]Mχ0
× G, where G is the horizontal

sum of all [0χ , u′
χ ]Mχ

, χ ∈ H , is a lattice effect algebra whose family of all blocks
coincides with (Mχ )χ∈H . Since on every MV-effect algebra there is a state, the
existence of a state on E can be shown.
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Riečanová, Z. (2003b). Distributive atomic effect algebras, Demonstratio Mathematica 36, 247–259.
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